Joint Estimation Using Quadratic Estimating Function
نویسندگان
چکیده
A class of martingale estimating functions is convenient and plays an important role for inference for nonlinear time series models. However, when the information about the first four conditional moments of the observed process becomes available, the quadratic estimating functions are more informative. In this paper, a general framework for joint estimation of conditional mean and variance parameters in time series models using quadratic estimating functions is developed. Superiority of the approach is demonstrated by comparing the information associated with the optimal quadratic estimating function with the information associated with other estimating functions. Themethod is used to study the optimal quadratic estimating functions of the parameters of autoregressive conditional duration ACD models, random coefficient autoregressive RCA models, doubly stochastic models and regressionmodels with ARCH errors. Closed-form expressions for the information gain are also discussed in some detail.
منابع مشابه
Enlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملA Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملJoint Structure Estimation for Categorical Markov Networks
We consider the problem of identifying and estimating non-zero parameters in the Markov model for binary variables. We approximate the full likelihood by a pseudolikelihood function and propose a joint `1-penalized logistic regression method, which imposes overall sparsity on the parameters. We show that the proposed method leads to consistent parameter estimation and model selection under high...
متن کاملQuadratic inference function approach to merging longitudinal studies: validation and joint estimation
Merging data from multiple studies has been widely adopted in biomedical research. In this paper, we consider two major issues related to merging longitudinal datasets. We first develop a rigorous hypothesis testing procedure to assess the validity of data merging, and then propose a flexible joint estimation procedure that enables us to analyse merged data and to account for different within-s...
متن کامل